A Bayesian semiparametric latent variable model for mixed responses
نویسنده
چکیده
In this article we introduce a latent variable model (LVM) for mixed ordinal and continuous responses, where covariate effects on the continuous latent variables are modelled through a flexible semiparametric predictor. We extend existing LVM with simple linear covariate effects by including nonparametric components for nonlinear effects of continuous covariates and interactions with other covariates as well as spatial effects. Full Bayesian modelling is based on penalized spline and Markov random field priors and is performed by computationally efficient Markov chain Monte Carlo (MCMC) methods. We apply our approach to a large German social science survey which motivated our methodological development.
منابع مشابه
A Bayesian semiparametric latent variable model for mixed responses
In this article we introduce a latent variable model (LVM) for mixed ordinal and continuous responses, where covariate effects on the continuous latent variables are modelled through a flexible semiparametric predictor. We extend existing LVM with simple linear covariate effects by including nonparametric components for nonlinear effects of continuous covariates and interactions with other cova...
متن کاملA Semiparametric Approach to Mixed Outcome Latent Variable Models: Estimating the Association between Cognition and Regional Brain Volumes
Multivariate data that combine binary, categorical, count and continuous outcomes are common in the social and health sciences. Often, mixed outcome variables together are considered to be tapping a particular latent construct. A common research question then focuses on estimation of the relationship between a latent construct and a scientifically important covariate of interest. A motivating e...
متن کاملBayesian Semiparametric Structural Equation Models with Latent Variables
Structural equation models (SEMs) with latent variables are widely useful for sparse covariance structure modeling and for inferring relationships among latent variables. Bayesian SEMs are appealing in allowing for the incorporation of prior information and in providing exact posterior distributions of unknowns, including the latent variables. In this article, we propose a broad class of semipa...
متن کاملGeneralized Semiparametric Latent Variable Models for Analyzing Multidimensional and Mixed Mode Data
In the medical, behavioral, social, and psychological sciences, latent variables represent unobservable traits that are measured by multiple observed variables. Latent variable models (LVMs) are useful tools for assessing the interrelationships among latent and observed variables. Due to their wide applications, LVMs have attracted significant attention from various fields. However, the majorit...
متن کاملBeta - Binomial and Ordinal Joint Model with Random Effects for Analyzing Mixed Longitudinal Responses
The analysis of discrete mixed responses is an important statistical issue in various sciences. Ordinal and overdispersed binomial variables are discrete. Overdispersed binomial data are a sum of correlated Bernoulli experiments with equal success probabilities. In this paper, a joint model with random effects is proposed for analyzing mixed overdispersed binomial and ordinal longitudinal respo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005